



FRENTANI CONVENTION CENTER - Via dei Frentani, 4 00185 Roma - +39 06 448 792 26

### THURSDAY, FEBRUARY 20TH

## **Ground Floor**



## Floor (-1)





oma

Via dei Frentani, 4 - 00185 Roma +39 06 448 792 26

### THURSDAY, FEBRUARY 20th

Room: Auditorium Gallery + ETRUSCHI + AISLE

## Concurrent Session 1.4 Genome, Chromatin, epigenetic

| P. Code | Name      | Surname        | Title                                                                                                                                               |  |
|---------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C2-01   | Lucia     | Gomez Gil      | Structural dynamics of chromosomes and its role in genome plasticity of Fusarium oxysporum                                                          |  |
| C2-02   | Saskia    | du Pre         | genetic transformation method for the mycetoma-causing agent Madurella mycetomatis                                                                  |  |
| C2-03   | Tünde     | Kartali        | Detection and molecular characterization of novel dsRNA viruses isolated from different Zygomycete fungi                                            |  |
| C2-04   | Jovan     | Komluski       | Functional dissection of the meiotic drive of female-inherited accessory chromosomes in Zymoseptoria tritici                                        |  |
| C2-05   | Ting-Fang | Wang           | Trichoderma reesei Rad51 can tolerate mismatch sequences to promote interhomolog recombination and chromosome synapsis during hybrid meiosis        |  |
| C2-06   | Lisa      | Wise           | Identification and characterization of the poly(ADP-ribose) glycohydrolase of Aspergillus nidulans                                                  |  |
| C2-07   | Ramon     | Ramos Barrales | Control of virulence by sirtuins in <i>Ustilago maydis</i>                                                                                          |  |
| C2-08   | Michael   | Habig          | Temperature and histone modifications affect the mutation rate in the wheat pathogen Zymoseptoria tritici                                           |  |
| C2-09   | Justine   | Colou          | Role of Kmt6, a histone methyl transferase, in plant pathogenicity of the necrotrophic fungus Alternaria brassicicola                               |  |
| C2-10   | Ying      | Huang          | Schizosaccharomyces pombe Mti2 and Mti3 function together in mitochondrial translation initiation                                                   |  |
| C2-11   | Pedro     | Talhinhas      | Flow cytometry as the state of the art tool for fungal nuclear DNA quantification: genome size measurement and nuclear cycle analysis               |  |
| C2-12   | Roland    | Martzy         | Interaction of a fungal lncRNA with a transactivator enhances cellulase production in Trichoderma reesei                                            |  |
| C2-13   | Frederick | Witfeld        | Genomic analysis and intraspecific diversity of a new heat resistant basidiomycetous fungal species                                                 |  |
| C2-14   | Lauren    | Dineen         | Functional analysis of the tRNA-ome of Aspergillus fumigatus                                                                                        |  |
| C2-15   | Shay      | Covo           | Developmentally-regulated oscillations in the expression of UV repair genes in a soilborne plant pathogen dictate UV repair efficiency and survival |  |
| C2-16   | Minji     | Park           | Genomic Analysis of Ketoconazole Resistance in the Dandruff-associated Pathogenic Fungus Malassezia restricta                                       |  |
| C2-17   | Kap-Hoon  | Han            | Complete mitochondrial genome sequences of Aspergillus luchuensis, Aspergillus parasiticus and Aspergillus pseudoglaucus                            |  |
| C2-18   | Takayuki  | Arazoe         | Ectopic recombination between solo-long terminal repeats triggered pathogenic changes and genome rearrangement in the rice blast fungus             |  |
| C2-19   | Mathu     | Malar          | The genome of Geosiphon: an arbuscular mycorrhizal fungus that forms symbioses with cyanobacteria                                                   |  |
| C2-20   | Lucía     | Ramírez        | Mitochondrial dysfunction in <i>Pleurotus ostreatus</i> progeny: a matter of genome conflict.                                                       |  |
| C2-21   | Ioannis   | Papaioannou    | Genome evolution in the new model yeast species Saccharomycodes ludwigii: trade-off between meiotic recombination and epigenetic inheritance        |  |



+39 06 448 792 26

Via dei Frentani, 4 - 00185 Roma Room:

THURSDAY, FEBRUARY 20th

Room: Auditorium Gallery + ETRUSCHI + AISLE

### **Concurrent Session 1.5 Omics and Bioinformatics**

| P. Code | Name         | Surname              | Title                                                                                                                            |
|---------|--------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| C2-22   | Gabriel      | Vignolle             | Novel method in genome mining and transcriptome analysis reveal undiscovered RiPPs in <i>Trichoderma</i> spp.                    |
| C2-23   | Diem         | Nguyen               | Comparative genomics of transposable elements and Repeat-Induced Point (RIP) mutation landscapes in Neurospora species           |
| C2-24   | Elodie       | Drula                | Capturing biochemical information in the CAZy database                                                                           |
| C2-25   | Lena         | Steins               | Comparative genomics of smut fungi indicate ability of meiotic division and sexual reproduction in the genus Pseudozyma          |
| C2-26   | Mao          | Peng                 | CreA regulation was observed at low free monosaccharide level during Aspergillus niger grown on crude plant biomass              |
| C2-27   | Areejit      | Samal                | A blueprint of the protein secretion machinery in Neurospora crass a                                                             |
| C2-28   | Areejit      | Samal                | Prediction and analysis of the secretome of an opportunistic fungal pathogen                                                     |
| C2-29   | Atsushi      | Sato                 | Comparative genomics between an industrially important species, Aspergillus sojae, and harmful one, Aspergillus parasiticus      |
| C2-30   | Marie-Noëlle | Rosso                | Conserved white rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus explored by genomics and proteomics |
| C2-31   | Danielle     | Weaver               | Uncovering long non-coding RNA associated with drug response in Aspergillus fumigatus                                            |
| C2-32   | Arpad        | Csernetics           | Development of single and multitargeted gene deletion methods in the inky-cap fungus Coprinopsis cinerea                         |
| C2-33   | Celine       | Petersen             | In-house long read sequencing yields affordable superb fungal genome assemblies                                                  |
| C2-34   | Masahiro     | Hayashi              | Effects of nitrogen deficiency on lipid synthesis and metabolic profiling of xylose assimilating thraustochytrid                 |
| C2-35   | Ayako        | Matsuda              | Xylose adaptation and metabolic profiling of heterotrophic thraustochytrid for microbial production of biofuels                  |
| C2-36   | Reem         | Aboukhaddour         | Draft genome assemblies of a global collection of Pyrenophora triticirepentis, the causal agent of tan spot disease of wheat     |
| C2-37   | Marina       | Collina              | Genome sequence of Stemphylium vesicarium, the causal agent of Brown Spot disease of Pear                                        |
| C2-38   | Ekaterina    | Shelest              | Application of comparative promoter analysis for understanding of secondary metabolism regulation in non-model fungi             |
| C2-39   | Rita Milvia  | De Miccolis Angelini | New genomic resources for the brown rot fungal pathogens Monilinia fructicola, Monilinia laxa and Monilinia fructigena           |
| C2-40   | Raphaela     | Georg                | Trichoderma harzianum aluminum tolerance is mediated by a large change in gene expression profile                                |



THURSDAY, FEBRUARY 20th

Room: Auditorium

## **Concurrent Session 2.3 Antifungal and fungicides**

| P. Code | Name         | Surname      | Title                                                                                                                                               |
|---------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| C1-01   | Lina         | Qin          | Deciphering the antifungal mechanism of HSAF using the model filamentous fungus Neurospora crassa                                                   |
| C1-02   | Hagiwara     | Daisuke      | Characterization of azole resistant Aspergillus fumigatus strains isolated from imported tulip bulbs that were purchased in Japan                   |
| C1-03   | Saskia       | du Pre       | The mechanism behind the intrinsic resistance of <i>Madurella mycetomatis</i> to the echinocandins                                                  |
| C1-04   | Carmen       | Limon        | Improvement of a lux-system that detect new antifungals                                                                                             |
| C1-05   | Gayan        | Abeysinghe   | Exploring the variety of interactions between Fungi and Bacteria                                                                                    |
| C1-06   | Madison      | Covington    | Increase of reactive oxygen species contributes to growth inhibition by fluconazole in Cryptococcus neoformans                                      |
| C1-07   | Sayoko       | Oiki         | Cellular response to farnesol and the role of nitric oxide production in Aspergillus fumigatus                                                      |
| C1-08   | Mónica       | Gandía       | Role of the MAPK signaling pathways and chitin synthases of the phytopathogenic fungus Penicillium digitatum in sensitivity to antifungal proteins. |
| C1-09   | Paloma       | Manzanares   | Comparison of the production pattern and antifungal activity of three antifungal proteins from the phytopathogenic fungus Penicillium expansum      |
| C1-10   | Sabine       | Fillinger    | Amplicon-deep sequencing using Oxford-Nanopore® technology to quantify multi-drug-resistant strains in Zymoseptoria tritici populations             |
| C1-11   | Anant        | Kakar        | Antifungal potential of the Temporin B-derived synthetic peptide TB_KKG6K                                                                           |
| C1-12   | Dejana       | Kosanovic    | In vitro study of Agaricus bisporus proteomic response to Trichoderma aggressivum f. europaeum supernatant                                          |
| C1-13   | Irene Maja   | Nanni        | Sensitivity monitoring of <i>Plasmopara viticola</i> to oxathiapiprolin, a new member of piperidinyl thiazole isoxazoline fungicides                |
| C1-14   | Alessandra   | Di Francesco | Alternative control system of <i>Pleurotus ostreatus</i> against green mold disease                                                                 |
| C1-15   | Clay         | Wang         | Discovery of the biosynthetic pathway for the antifungal hymeglusin in Scopulariopsis candida                                                       |
| C1-16   | Hajer        | Alshraim     | A rapid CRISPR-mediated Tet-Off system reveals the phosphoinositide kinases Stt4 and Mss4 are essential for viability of Aspergillus fumigatus      |
| C1-17   | Jian         | Zhang        | Azaphilones biosynthesis in <i>Trichoderma harzianum</i> benefits fungal survival to oxidative stress                                               |
| C1-18   | Amelia       | Barber       | Comparative genomics of Aspergillus fumigatus and the influence of agriculture on ecology and azole resistance                                      |
| C1-19   | Hamama Imène | Lammari      | Sensitivity of Algerian Pyrenophora teres population to QoI and SDHI fungicides as reveled by Pyrosequencing                                        |
| C1-20   | Khaled       | El-Tarabily  | Molecular identification and disease management of stem canker of royal poinciana caused by Neoscytalidium dimidiatum in the United Arab Emirates   |
| C1-21   | Antonio      | Moretti      | Selection, genetic characterization and aflatoxin production of Aspergillus flavus strains resistant to SDHI boscalid                               |
| C1-22   | Jelena       | Loncar       | Activity of oligosaccharides derived from Tramesan on aflatoxin inhibition in Aspergillus flavus                                                    |
| C1-23   | Valeria      | Scala        | Signals in pathogen and host sensing: free fatty acid and oxylipins                                                                                 |



Via dei Frentani, 4 - 00185 Roma +39 06 448 792 26 THURSDAY, FEBRUARY 20th

Room: Auditorium

| Concurrent Session 3.3 Applied and Environmentl microbiology |                |                   |                                                                                                                                                                   |  |  |
|--------------------------------------------------------------|----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| P. Code                                                      | Name           | Surname           | Title                                                                                                                                                             |  |  |
| C1-24                                                        | Takeshita      | Norio             | Fungal highway and bacterial toll                                                                                                                                 |  |  |
| C1-25 (on<br>19th B2-25)                                     | Lea            | Atanasova         | Functional diversification of cellobiose dehydrogenases uncovers their involvement in multiple nutritional strategies of the mycoparasite Clonostachys rosea      |  |  |
| C1-26                                                        | Joske          | Ruytinx           | Functional and evolutionary genetics of zinc tolerance in Suillus luteus                                                                                          |  |  |
| C1-27                                                        | Desirrê Alexia | Lourenço Petters  | Antifungal potential of endophytes from brazilian medicinal plants against the Colletotrichum abscissum and Phyllosticta citricarpa                               |  |  |
| C1-28                                                        | Lee            | Inhyung           | Development of an improved menopausal symptom-alleviating licorice (Glycyrrhiza uralensis) by biotransformation using Monascus albidulus                          |  |  |
| C1-29                                                        | Jiali          | Meng              | GalR, GalX and AraR co-regulate D-galactose and L-arabinose utilization in Aspergillus nidulans                                                                   |  |  |
| C1-30                                                        | Adiphol        | Dilokpimol        | Exoproteome and transcriptome of a potential new fungal cell factory, <i>Penicillium subrubescens</i> : Target specific biomass degrading enzyme production       |  |  |
| C1-31                                                        | Xinxin         | Li                | Functional validation of Carbohydrate Esterase family 1 subfamily 1 and 2 by characterization of fungal esterases from uncharacterized branches                   |  |  |
| C1-32                                                        | Roland         | Kun               | Regulation of wheat bran utilization in the industrially relevant filamentous fungus Aspergillus niger                                                            |  |  |
| C1-33                                                        | Chengshu       | Wang              | Release and recovery: Twenty years' evolution of a fungal population after releasing exotic strains to control insect pests                                       |  |  |
| C1-34                                                        | Takehito       | Nakazawa          | Comparative genetic and transcriptome analyses of pex1 and gat1 single-gene mutants between Ceriporiopsis subvermispora and Pleurotus ostreatus                   |  |  |
| C1-35                                                        | Moira          | Kelly             | Thriving after host extinction: intraspecific variation and isolate-specific metabolic capacities of Batrachochytrium salamandrivorans                            |  |  |
| C1-36                                                        | Sandra         | Garrigues         | Combinatorial control of transcription factors involved in sugar beet pulp utilization in the industrially relevant fungus Aspergillus niger                      |  |  |
| C1-37                                                        | Tom            | van den Brule     | A Genome Wide Association Study reveals genomic insights in conidial heat resistance of Paecilomyces variotii                                                     |  |  |
| C1-38                                                        | Anna           | Gorbushina        | Stress tolerance in microcolonial black fungi can be studied with new techniques: presenting a genetic toolbox for Knufia petricola                               |  |  |
| C1-39                                                        | Zhong          | Yaohua            | Deletion of the target extracellular protease genes identified by secretomics for high-level production of cellulolytic enzymes in Trichoderma reesei             |  |  |
| C1-40                                                        | Honda          | Yoichi            | CRISPR/Cas9 in mushrooms without integration of ectopic DNA                                                                                                       |  |  |
| C1-41                                                        | Jillian        | Romsdahl          | Directed evolution of melanized fungi to investigate mechanisms of adaptation and resistance to ionizing radiation                                                |  |  |
| C1-42                                                        | Kristiina      | Hildén            | The white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on spruce wood              |  |  |
| C1-43                                                        | Eero           | Kiviniemi         | Wood decay fungi studied under fermentative and oxygen-stress conditions                                                                                          |  |  |
| C1-44                                                        | Keietsu        | Abe               | Analysis of self-assembly mechanism of hydrophobin RoIA of Aspergillus oryzae using Langmuir- Blodgett method                                                     |  |  |
| C1-45                                                        | Katsuya        | Gomi              | Expression profiles of amylolytic genes in the black koji-mold Aspergillus luchuensis                                                                             |  |  |
| C1-46                                                        | Agnese         | Seminara          | Timing of fungal spore release dictates survival during atmospheric transport                                                                                     |  |  |
| C1-47                                                        | Daniele        | Lagomorsino Oneto | Optimal strategies for fungal spores liberation                                                                                                                   |  |  |
| C1-48                                                        | Fernando       | Pérez-Rodríguez   | Bacterium endosymbiosis in <i>Ustilago maydis</i> infecting maize plants in nature                                                                                |  |  |
| C1-49                                                        | Catalina       | Landeta           | The growth of marine fungi in complex substrates produces hydrophobic proteins with the ability to self-assembling                                                |  |  |
| C1-50                                                        | Javier         | Ribera            | Fungal melanin-based electrospun membranes for heavy metal detoxification of water                                                                                |  |  |
| C1-51                                                        | Inês           | Diniz             | Integrating field surveys and molecular data to assess the phytosanitary status of cashew in Guinea-Bissau (West Africa)                                          |  |  |
| C1-52                                                        | Fuga           | Yamasaki          | Simultaneous gene mutations in both nuclei of dikaryotic strain of <i>Pleurotus ostreatus</i> using CRISPR/Cas9                                                   |  |  |
| C1-53                                                        | Andrea         | Ceci              | A genomic and transcriptomic study on genetic data into mycoremediation strategies                                                                                |  |  |
| C1-54                                                        | Giovanna       | Varese            | Bioremediation of polluted soils - the role of fungi                                                                                                              |  |  |
| C1-55                                                        | Giovanna       | Varese            | Draft genome sequences and annotation of <i>Trichoderma lixii</i> and <i>Trichoderma capillare</i> isolated from PAH-contaminated soil and industrial wastewaters |  |  |
| C1-56                                                        | Antonio        | Pisabarro         | Multi-omics analysis of wood-dependent induction of lignocellulolyctic enzyme secretion in cultures of the white-rot basidiomycete <i>Pleurotus ostreatus</i>     |  |  |

| C1-57 | Jiang    | Siqi               | Ecophysiology and applied biodiversity of phillosphere fungi in tropical and subtropical forests                                                       |  |
|-------|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C1-58 | Domenico | Davolos            | In silico identification of the oosporein gene cluster in the genome of Victoriomyces antarcticus                                                      |  |
| C1-59 | Banu     | Metin              | Diversity of Penicillium roqueforti isolates from Turkish mold-ripened cheeses                                                                         |  |
| C1-60 | Khaled   | <b>El-Tarabily</b> | Biological control of stem canker of royal poinciana caused by Neoscytalidium dimidiatum using endophytic actinobacteria able of producing ACC deamina |  |
| C1-61 | Veronica | Spinelli           | Boosting plant growth: fungal metabolites as biostimulants for growth promotion of Hypericum perforatum (L.)                                           |  |
|       |          |                    |                                                                                                                                                        |  |

THURSDAY, FEBRUARY 20th

Room: LATINI

## Concurrent Session 3.4 Syntethic biology and Biotechnology

| concurrence session six synteetine stology and stolectinology |           |               |                                                                                                                                                         |  |
|---------------------------------------------------------------|-----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| P. Code                                                       | Name      | Surname       | Title                                                                                                                                                   |  |
| C3-01                                                         | Sandriele | Noriler       | Investigation of secondary Metabolite Biosynthetic Pathwais in Endophytic Fungi Through Genomic Analysis                                                |  |
| C3-02                                                         | Olga      | Mosunova      | Exploring fungal genomes for novel natural products                                                                                                     |  |
| C3-03                                                         | Sandra    | Garrigues     | CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus <i>Penicillium subrubescens</i> as a new industrial enzyme producer |  |
| C3-04                                                         | Wouter    | de Bonte      | Fungal host strains for the industrial enzyme or protein production                                                                                     |  |
| C3-05                                                         | David     | Peris Navarro | Combining and improving phenotypic traits through the generation of synthetic two- and six-species yeast hybrids                                        |  |
| C3-06                                                         | Tiziano   | Benocci       | Deletion of the regulatory gene ara1 or metabolic gene xki1 in Trichoderma reesei leads to increased CAZyme gene expression on crude plant biomass      |  |
| C3-07                                                         | Joanna    | Kowalczyk     | Expanding the molecular toolbox for the white-rot fungus <i>Dichomitus squalens</i>                                                                     |  |
| C3-08                                                         | Jose F.   | Marcos        | FungalBraid: A GoldenBraid-based modular cloning platform for fungal synthetic biology                                                                  |  |
| C3-09                                                         | Luis      | Larrondo      | Coupling cell communication and optogenetics: Implementation of a synthetic light-inducible intercellular system in yeast                               |  |
| C3-10                                                         | Benedikt  | Siebecker     | Characterization of gene regulatory networks of Thermothelomyces thermophilus to improve protein production                                             |  |
| C3-11                                                         | Gregory   | Bulmer        | Imidazolium-labelled glycosides for the characterisation of enzymatic function during plant biomass degradation                                         |  |
| C3-12 (on<br>19th B2-26)                                      | Jolanda   | van Munster   | Surface analysis tools identify how Aspergillus niger and its enzymes modify lignocellulose                                                             |  |
| C3-13                                                         | Tabea     | Schuetze      | Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi                                                        |  |
| C3-14                                                         | Zhihua    | Zhou          | A putative methyltransferase TrMET involved in cellulase induction in <i>Trichoderma reesei</i>                                                         |  |
| C3-15                                                         | Andika    | Sidar         | Newly designed modular carbohydrate-active enzyme to increase the efficiency of lignocellulose degradation                                              |  |
| C3-16                                                         | Domenico  | Davolos       | Draft genome and annotation of Aspergillus affinis (Circumdati): first insights into a biotech perspective                                              |  |
| C3-17                                                         | Cesar     | Terrasan      | Biological importance of lytic polysaccharide monooxygenases and cellobiose dehydrogenase in Aspergillus nidulans                                       |  |



Via dei Frentani, 4 - 00185 Roma +39 06 448 792 26

## **THURSDAY, FEBRUARY 20th**

Room: **LATINI** h: 18:00

| Speaker and Affiliation                                                                                                    | Title of the flash talk (5 minutes)                                                                                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ting-Fang Wang - Academia Sinica Institute of Molecular Biology                                                            | Complete genome sequences reveals novel insights into chromosomal organization and evolution of different Trichoderma species                  |  |  |  |
| <b>Pedro Talhinhas</b> - Instituto Superior de<br>Agronomia LEAF                                                           | Flow cytometry as the state of the art tool for fungal nuclear DNA quantification: genome size measurement and nuclear cycle analysis          |  |  |  |
| Michael Habig, Christian-Albrechts-Universität<br>zu Kiel and Max Planck Institute for<br>Evolutionary                     | Temperature and histone modifications affect the mutation rate in the wheat pathogen Zymoseptoria tritici                                      |  |  |  |
| <b>Atsushi Sato</b> - Kikkoman Corporation Research & Development                                                          | Comparative genomics between an industrially important species, Aspergillus sojae, and harmful one, Aspergillus parasiticus                    |  |  |  |
| <b>Danielle Weaver</b> - University of Manchester Faculty of Biology, Medicine & Health                                    | Uncovering long non-coding RNA associated with drug response in Aspergillus fumigatus                                                          |  |  |  |
| Celine Petersen - Aalborg University<br>Biotechnology                                                                      | In-house long-read sequencing yields affordable superb fungal genome assemblies                                                                |  |  |  |
| Clay Wang - University of California-USA                                                                                   | Discovery of the biosynthetic pathway for the antifungal hymeglusin in Scopulariopsis candida                                                  |  |  |  |
| <b>Hajer Alshraim Alshammri</b> - Uniersity of Manchester - UK                                                             | A rapid CRISPR-mediated Tet-Off system reveals the phosphoinositide kinases Stt4 and Mss4 are essential for viability of Aspergillus fumigatus |  |  |  |
| Amelia Barber - Univeristy of Haale-Germany                                                                                | Comparative genomics of Aspergillus fumigatus and the influence of agriculture on ecology and azole resistance                                 |  |  |  |
| <b>Norio Takeshita</b> - Japan, University of Tsukuba<br>Microbiology Research Center for<br>Sustainability (MiCS) Tsukuba | Fungal highway and bacterial toll                                                                                                              |  |  |  |
| <b>Keietsu Abe</b> - Japan, Graduate School of Agricultural Science, Tohoku University                                     | Analysis of self-assembly mechanism of hydrophobin RolA of Aspergillus oryzae using Langmuir-Blodgett method                                   |  |  |  |

| Adiphol Dilokpimol - Netherlands, Westerdijk<br>Fungal Biodiversity Institute Fungal Physiology<br>Utrecht | Exoproteome and transcriptome of a new fungal cell factory, Penicillium subrubescens, reveal target specific plant biomass degrading enzyme production |  |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| David Peris - University of Oslo Biosciences                                                               | Combining and improving phenotypic traits through the generation of synthetic two- and six-species yeast hybrids                                       |  |  |
| Tiziano Benocci -AIT                                                                                       | Deletion of the regulatory gene ara1 or metabolic gene xki1 in Trichoderma reesei leads to increased CAZyme gene expression on crude plant biomass     |  |  |
| Olga Mosunova - Westerdijk Fungal<br>Biodiversity Institute                                                | Exploration of fungal genomes awakens a novel biosynthetic pathway                                                                                     |  |  |