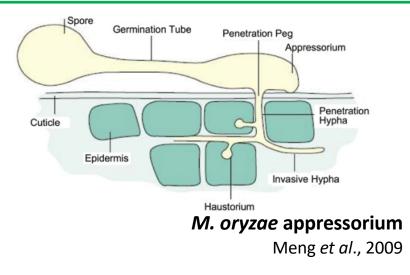
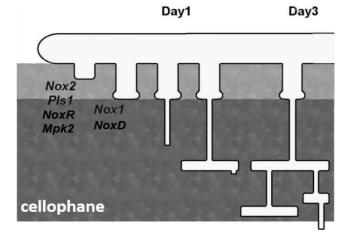


ECFG15 ROME • ITALY 2020

Laboratoire Interdisciplinaire des Energies de Demain Paris Interdisciplinary Energy Research Institute

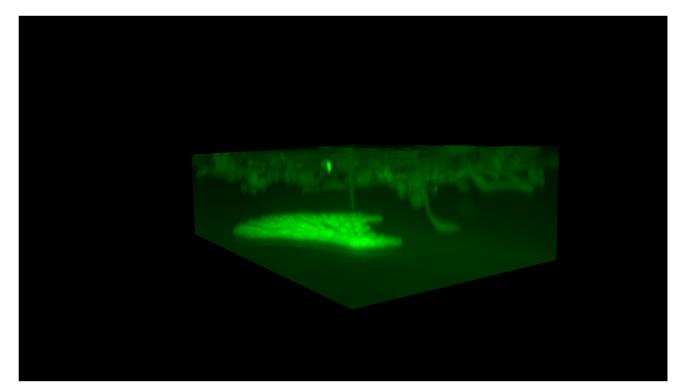



Appressorium THE BREAKTHROUGH IN DIKARYA

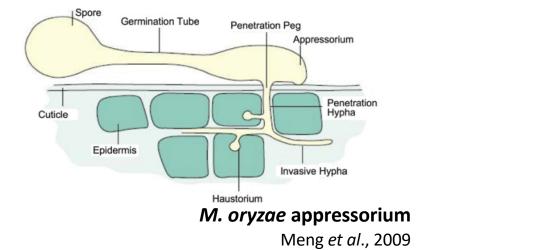
Alexander Demoor PhD Student LIED – Université de Paris

What's an appressorium?

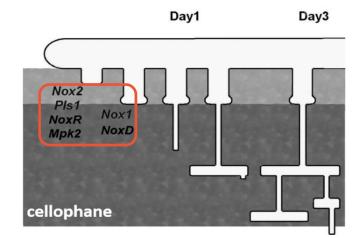
Emmett & Parbery, 1975: "All structures adhering to host surfaces to achieve penetration, regardless of morphology"


P. anserina appressorium Brun *et al.*, 2009

Podospora's appressorium



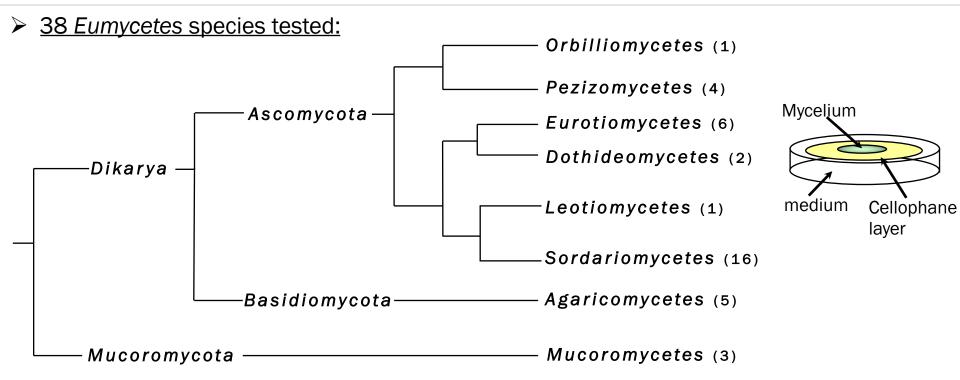
Podospora anserina tagged with cytoplasmic GFP



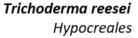
What's an appressorium?

Emmett & Parbery, 1975: "All structures adhering to host surfaces to achieve penetration, regardless of morphology"

- > The appressorium is not exclusive to pathogenic species!
- Homologous structures
- > Is this structure widespread among saprotrophic *Eumycetes*?



P. anserina appressorium Brun *et al.*, 2009


What about other species?

- > 24/38 (63%) species tested develop an appressorium in our conditions
- > Appressorium development is widespread among saprotrophic Dikarya Demoor *et al.,* 2019

Some species of interest develop an appressorium

Neurospora crassa Sordariales

Sordaria macrospora Sordariales

Demoor et al., 2019 6/20

ECFG15

ROME • ITALY 2020

A breakthrough in *Eumycetes*?

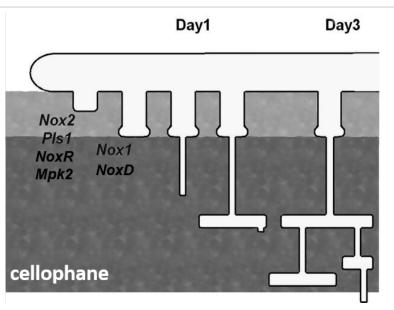
- The appressorium is an adhesion and penetration structure encountered in numerous fungal species: pathogenic/symbiotic/saprotrophic
- > The appressorium is an ancestral feature among Dikarya

- > What about other *Eumycetes*?
 - Could some *Mucoromycetes* actually develop an appressorium?
 - Some Glomeromycota species can differentiate appressoria
 - Test other *Eumycetes* species

→ When did the appressorium appear during the evolution?

> What about the genetic program of appressorium development?

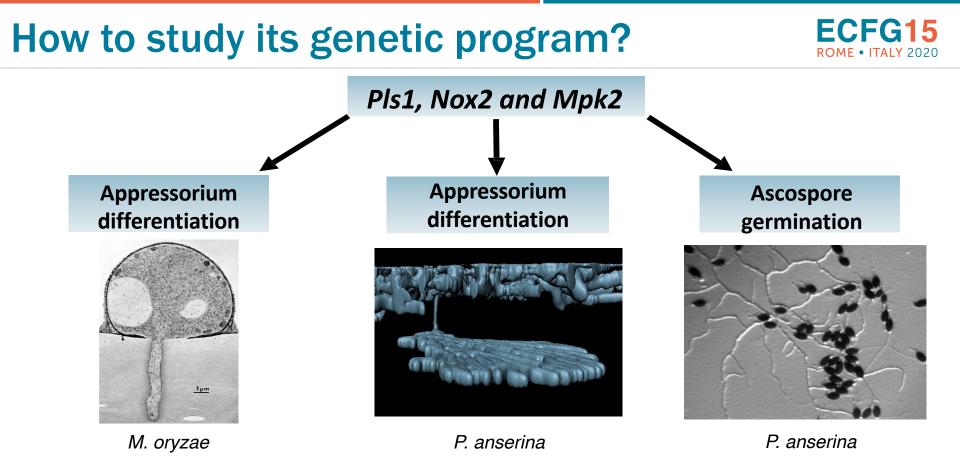
Podospora anserina: a genetic model



Ascomycota

- Genome sequenced: 35 Mb, 7 chromosomes
- > Non-pathogenic
- Easily cultured in the lab
- Fast growing: 7mm per day
- One-week sexual reproduction cycle
- Easy molecular genetics studies

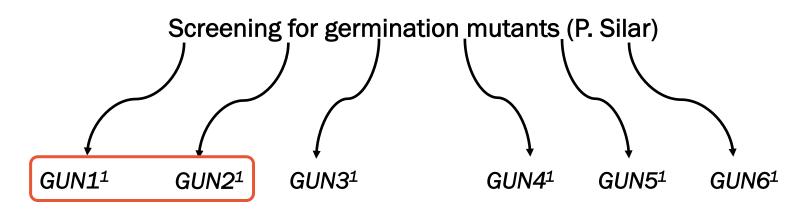
ECFG15


How to study its genetic program?

Aim: Identify the genes involved in this mechanism

Screening for suppressors restored for penetration
No new gene identified New strategy

ECFG15



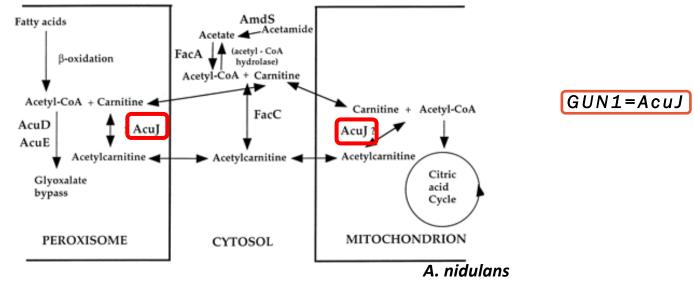
> Share common regulating elements

The AGADFUN project

- <u>A</u>scospore <u>Germination and Appressorium Development in FUNgi</u>
- Combined study: Study germination mutants to identify genes involved in both ascospore germination and appressorium development

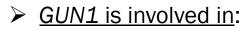
> 6 Germination UNcontrolled (GUN) mutants sequenced; 1 candidate gene for each

Unravel the regulation pathways of both processes


The GUN2¹ mutant

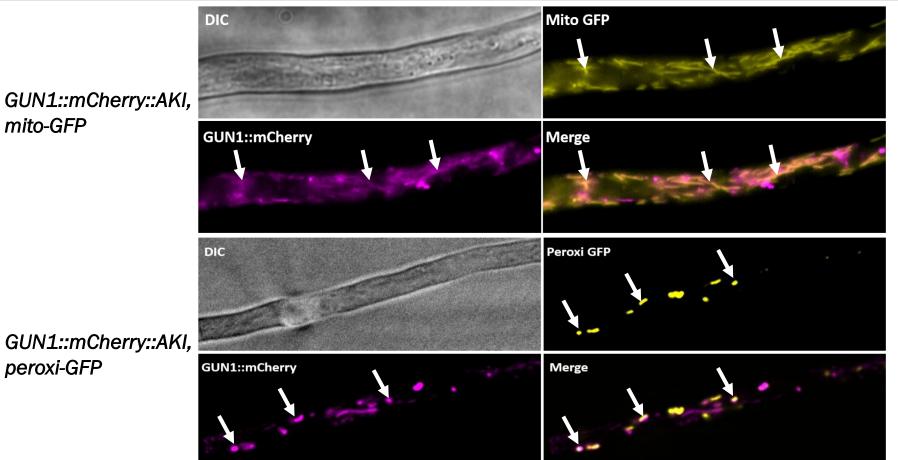
- ➢ <u>GUN2</u>: Transcription factor (Gal4 family)
- Never studied in filamentous fungi
- ➢ Involved in:
 - \blacktriangleright The control of germination: $\Delta GUN2$ germinates spontaneously
 - The appressorium formation: ΔGUN2 has a delay in appressorium formation
- ➤ <u>Transcriptomics analysis of ∆GUN2 during germination</u>: in progress
 Identification of new actors of both pathways

The GUN1¹ mutant


- ECFG15 ROME · ITALY 2020
- Point mutation in Pa_6_1340 (GUN1) which encodes a perox/mito Carnitin Acetyltransferase (CAT)

Stemple et al., 2010

- Identified in M. oryzae as virulence factor (Pth2; Bhambra et al., 2006)
 - Validates our approach


Study of the GUN1¹ mutant

- <u>The control of germination</u>: ΔGUN1 does not germinate
- <u>The setting up of appressorium</u>: ΔGUN1 has a delay of appressorium formation
- Tagging of the GUN1 protein:

The GUN1¹ mutant

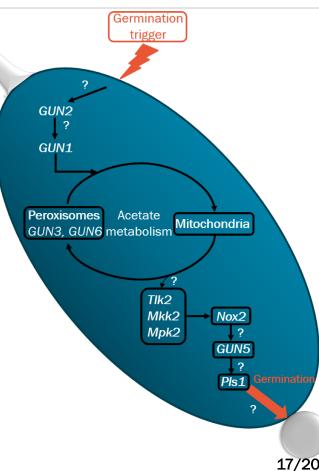
peroxi-GFP

Study of the GUN1¹ mutant

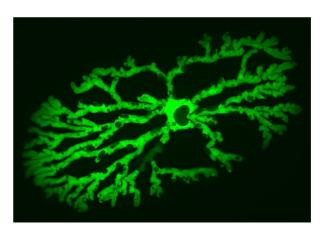
➢ <u>GUN1 is involved in</u>:

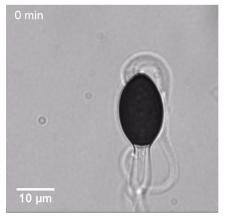
- <u>The control of germination</u>: ΔGUN1 does not germinate
- <u>The setting up of appressorium</u>: ΔGUN1 has a delay of appressorium formation

Tagging of the GUN1 protein:


- Both peroxisomal and mitochondrial
- Results for the mutant protein in progress: different localization?
- Epistasis studies place GUN1 upstream of Mpk2 and Pls1/Nox2 in the pathway
- Study of GUN1¹ mutant: Understand the role of the mitochondria and peroxisomes in ascospore germination and appressorium development

The GUN mutants




- Study both ascospore germination and appressorium development
- This strategy allowed to find a gene involved in pathogenicity
- Unravel their regulation pathways
- Candidate genes for other GUN mutants also connected to the acetate metabolism
- Promising strategy to find new actors of both processes

Take home message

- 1. The appressorium refers to all fungal mechanical penetration structures
- 2. It is widespread among Dikarya
- 3. Podospora anserina is a model species allowing us to find new regulators in these processes
- 4. Combined study of both ascospore germination and appressorium development
- 5. Find new actors of both pathways

Sylvain BRUN Assistant professor

Philippe SILAR Pr/Team leader

Sylvie CANGEMI Technical assistant

Valérie GAUTIER Engineer

Roselyne FERRARI Assistant professor

Genetics and Epigenetics of Fungi team

Christophe Lalanne Engineer

Alexander DEMOOR PhD student

Thank you for your attention

