Appressorium
THE BREAKTHROUGH IN DIKARYA

Alexander Demoor
PhD Student
LIED – Université de Paris
What’s an appressorium?

- **Emmett & Parbery, 1975**: “All structures adhering to host surfaces to achieve penetration, regardless of morphology”

![Diagram showing appressorium structures](image)

- **M. oryzae appressorium**
 - [Meng et al., 2009](#)

- **P. anserina appressorium**
 - [Brun et al., 2009](#)
Podospora’s appressorium

- *Podospora anserina* tagged with cytoplasmic GFP
What’s an appressorium?

- Emmett & Parbery, 1975: “All structures adhering to host surfaces to achieve penetration, regardless of morphology”

![Diagram of appressorium structures](image)

- The appressorium is not exclusive to pathogenic species!
- Homologous structures
- Is this structure widespread among saprotrophic *Eumycetes*?
What about other species?

- **38 Eumycetes species tested:**
 - **Ascomycota**
 - **Orbiliomycetes** (1)
 - **Pezizomycetes** (4)
 - **Eurotiomycetes** (6)
 - **Dothideomycetes** (2)
 - **Leotiomycetes** (1)
 - **Sordariomycetes** (16)
 - **Agaricomycetes** (5)
 - **Basidiomycota**
 - **Mucoromycota**
 - **Mucoromycetes** (3)
 - **Dikarya**

- **24/38 (63%) species tested develop an appressorium in our conditions**
- **Appressorium development is widespread among saprotrophic Dikarya**

Demoor et al., 2019
Some species of interest develop an appressorium

Trichoderma reesei
Hypocreales

Neurospora crassa
Sordariales

Sordaria macrospora
Sordariales

Demoor et al., 2019
A breakthrough in *Eumycetes*?

- The appressorium is an adhesion and penetration structure encountered in numerous fungal species: pathogenic/symbiotic/saprotrophic.

- The appressorium is an ancestral feature among *Dikarya*.

What about other *Eumycetes*?
- Could some *Mucoromycetes* actually develop an appressorium?
- Some *Glomeromycota* species can differentiate appressoria.
- Test other *Eumycetes* species.

When did the appressorium appear during the evolution?

What about the genetic program of appressorium development?
Podospora anserina: a genetic model

- Ascomycota
- Genome sequenced: 35 Mb, 7 chromosomes
- Non-pathogenic
- Easily cultured in the lab
- Fast growing: 7mm per day
- One-week sexual reproduction cycle
- Easy molecular genetics studies
How to study its genetic program?

Aim: Identify the genes involved in this mechanism

- Screening for suppressors restored for penetration
- No new gene identified → New strategy
How to study its genetic program?

Pils1, Nox2 and Mpk2

Appressorium differentiation

Appressorium differentiation

Ascospore germination

M. oryzae

P. anserina

P. anserina

➢ Share common regulating elements

Lambou et al., 2008
The AGADFUN project

- Ascospore Germination and Appressorium Development in FUNgi
- **Combined study:** Study germination mutants to identify genes involved in both ascospore germination and appressorium development

Screening for germination mutants (P. Silar)

- GUN1
- GUN2
- GUN3
- GUN4
- GUN5
- GUN6

- 6 Germination UNcontrolled (GUN) mutants sequenced; 1 candidate gene for each
- Unravel the regulation pathways of both processes
The $GUN2^1$ mutant

- $GUN2$: Transcription factor (Gal4 family)
- Never studied in filamentous fungi
- Involved in:
 - The control of germination: $\Delta GUN2$ germinates spontaneously
 - The appressorium formation: $\Delta GUN2$ has a delay in appressorium formation
- Transcriptomics analysis of $\Delta GUN2$ during germination: in progress
- Identification of new actors of both pathways
The \textit{GUN1}^{1} mutant

- Point mutation in \textit{Pa}_6\textunderscore1340 (\textit{GUN1}) which encodes a perox/mito Carnitin Acetyl-transferase (CAT)

- Identified in \textit{M. oryzae} as virulence factor (\textit{Pth2}; Bhambra et al., 2006)
 - Validates our approach

\textit{GUN1}=\textit{AcuJ}

\textit{A. nidulans}

Stemple \textit{et al.}, 2010
Study of the GUN1^1 mutant

- GUN1 is involved in:
 - The control of germination: ΔGUN1 does not germinate
 - The setting up of appressorium: ΔGUN1 has a delay of appressorium formation

- Tagging of the GUN1 protein:
The **GUN1** mutant

GUN1::mCherry::AKI, mito-GFP

GUN1::mCherry::AKI, peroxi-GFP
Study of the \textit{GUN1} mutant

- \textit{GUN1} is involved in:
 - The control of germination: \(\Delta \text{GUN1} \) does not germinate
 - The setting up of appressorium: \(\Delta \text{GUN1} \) has a delay of appressorium formation

- Tagging of the \textit{GUN1} protein:
 - Both peroxisomal and mitochondrial
 - Results for the mutant protein in progress: different localization?

- Epistasis studies place \textit{GUN1} upstream of Mpk2 and PIs1/Nox2 in the pathway

- Study of \textit{GUN1} mutant: Understand the role of the mitochondria and peroxisomes in ascospore germination and appressorium development
The *GUN* mutants

- Study both ascospore germination and appressorium development
- This strategy allowed to find a gene involved in pathogenicity
- Unravel their regulation pathways
- Candidate genes for other *GUN* mutants also connected to the acetate metabolism
- Promising strategy to find new actors of both processes
Take home message

1. The appressorium refers to all fungal mechanical penetration structures

2. It is widespread among Dikarya

3. *Podospora anserina* is a model species allowing us to find new regulators in these processes

4. Combined study of both ascospore germination and appressorium development

5. Find new actors of both pathways
Genetics and Epigenetics of Fungi team

Sylvain BRUN
Assistant professor

Philippe SILAR
Pr/Team leader

Sylvie CANGEMI
Technical assistant

Valérie GAUTIER
Engineer

Christophe Lalanne
Engineer

Roselyne FERRARI
Assistant professor

Alexander DEMOOR
PhD student
Thank you for your attention