The MAK-1 and MAK-2 MAP kinase modules have related but different functions in cell-cell fusion in *Neurospora crassa*
The Ascomycete *Neurospora crassa*
Germlings of *Neurospora crassa* fuse into a supracellular network

Ungerminated conidia

Conidia germinate, interact, and fuse

Hyphal-network resulting from fusion
The MAP kinases MAK-1 and MAK-2 are essential for germling interactions

WT Δmak-2 Δmak-1

85 ± 5% 0% 0%

MAK-2 is recruited to germling tips in an oscillating manner.
The MAP kinases MAK-1 and MAK-2 are essential for germling interactions

WT Δmak-2 Δmak-1

85 ± 5% 0% 0%

MAK-1 does not localize during cell-cell communication but localizes at the contact point

Weichert et al. 2016 PNAS
Chemical genetics: Analog sensitive kinases can be specifically inhibited by a bulky ATP analog.
Chemical inhibition of either MAK-1 or MAK-2 disrupts tropic interactions

Serrano et al., 2018
Chemical inhibition of either MAK-1 or MAK-2 disrupts tropic interactions

Serrano et al., 2018
Chemical inhibition of MAK-2 interrupts the cell-dialogue

Serrano et al., 2018
MAK-1 and MAK-2 have distinct functions during the interaction process
MAK-1 and MAK-2 have distinct functions during the interaction process.

mak-1E104G and Lifeact-GFP show that actin-cables vanish, actin-patches stay for 1-NM-PP1 treatment.
MAK-1 and MAK-2 have distinct functions during the interaction process.

For Mak-1^{E104G}, actin-cables vanish, but actin-patches remain.

For Mak-2^{Q100A}, actin-cables change their location.

Serrano et al., 2018
MAK-1 activity is required for cell-cell contact recognition

Communication

No communication

Weichert et al. 2016 PNAS
MAK-1 activity is required for cell-cell contact recognition

Weichert et al. 2016 PNAS
MAK-1 activity is required for cell-cell contact recognition

Weichert et al. 2016 PNAS
Conclusion

• MAK-1/MAK-2 are both essential for cell-cell interactions, but have distinct functions in the process

• MAK-2: Cell-**dialogue**; **Focus** of actinaster

MAK-1: Cell-**recognition**; **Stabilization** of actincables

• Chemical genetics has outstanding potential for investigation of kinases
André Fleißner
Ulrike Brandt
Martin Weichert
Antonio Serrano
Stephanie Herzog
Hamzeh Haj Hammadeh
Marcel Schumann
Marco Leiterholdt
Sofie Friedrich

Linda Matz
Anne Oostlander
Herbert Raditya
Bianca Sieg
Jonathan Benecke
Hannah Knobel
Anne Scheler
Till Wittemann
Simone Karrie

Department of Genetics

DFG

VolkswagenStiftung

Marie Curie Actions Program of the European Union

Niedersächsisches Ministerium für Wissenschaft und Kultur