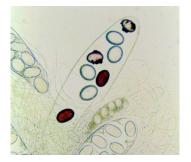
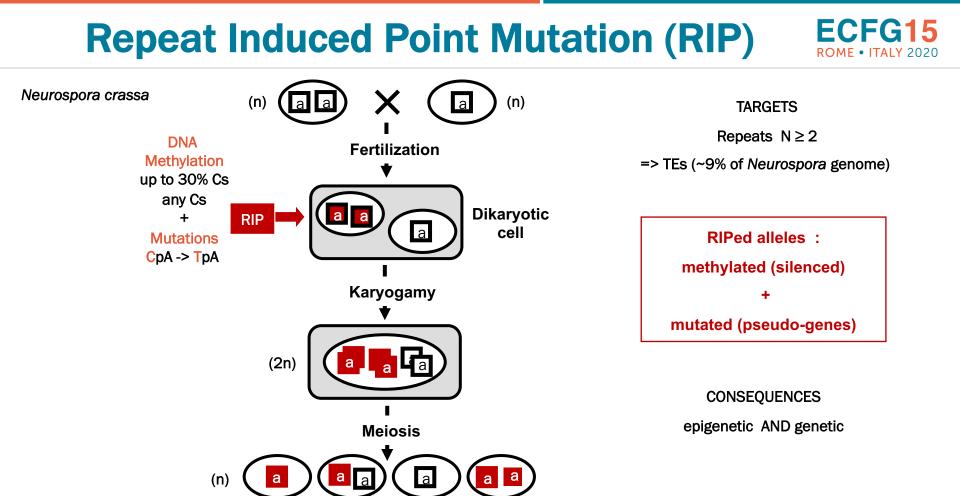


UNIVERSITE PARIS-SACLAY Epigenetics, RIP and sexual development in filamentous ascomycetes


Fabienne Malagnac

The fungal epigenetics lab project


- To understand the relationships between epigenetic modifications that shape the chromatin structure and :
- genome stability
- gene regulation during developmental processes (sexual reproduction)
 - \checkmark Using filamentous fungi as model organisms

Podospora anserina

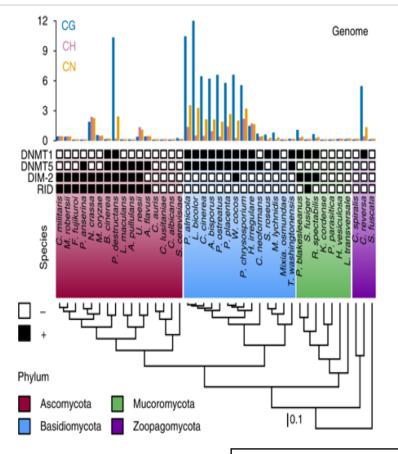
Ascobolus immersus

Selker et al. (1987)

ECFG15 RIP in N. crassa **Two RIP effectors : DNA-methyltransferases** RID Dim2 De novo methylation Maintenance methylation Targets = repeats Targets = spacer Depends on Other actors Dim5 are unknown (H3K9me3) ΔRID mutant $\Delta Dim2$ mutant NO DNA methylation NO de novo DNA methylation NO RIP on repeats NO RIP on the spacer

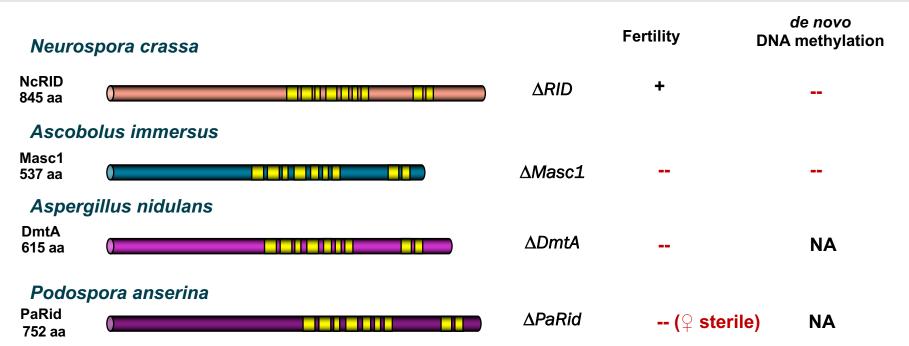
Freitag et al. (2002); Eugene Gladyshev & Nancy Kleckner, (2017)

Are RIP / RID conserved ?


Traces of RIP are found in most
Pezizomycotina genomes (*in silico*)
>RIP is important for fungal genome integrity and evolution

•RIP is conserved but :

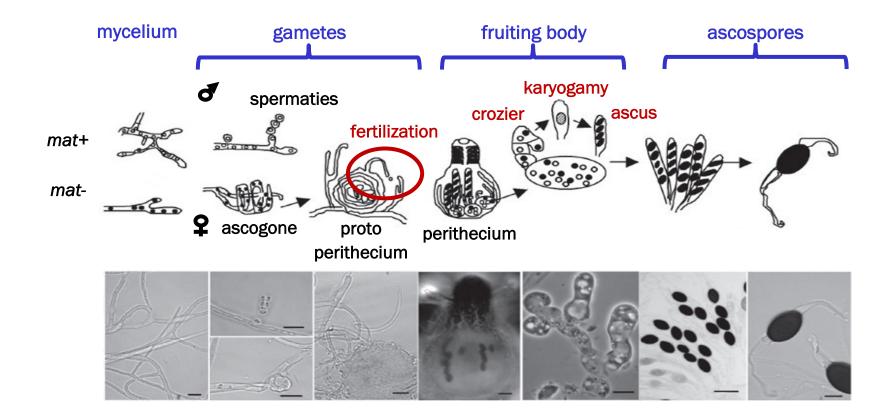
- in most cases no 5mC
- light mutagenic effect
- •RIP-like systems are polymorph


•RID protein is conserved in Pezizomycotina

 \rightarrow Need for alternative models

Bewick et al. (2019)

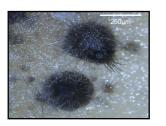
RID and sexual development

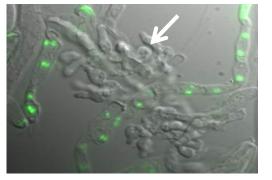

Role of RID (and RIP) in sexual development programs ?

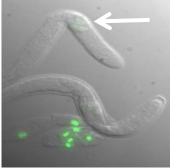
Malagnac et al. (1997); Freitag et al. (2002); Lee et al. (2008); Grognet et al. (2019)

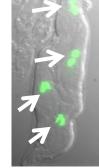
ECFG15

ROME • ITALY 2020

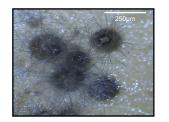

Sexual reproduction in P. anserina

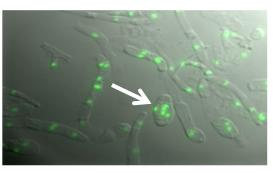

ECFG15


ROME • **ITALY** 2020


Why are $\triangle PaRid$ mutants sterile ?

 \mathbf{P} PaRid+ $\times \mathbf{O}$ PaRid+





Visualization of nuclei H1-GFP

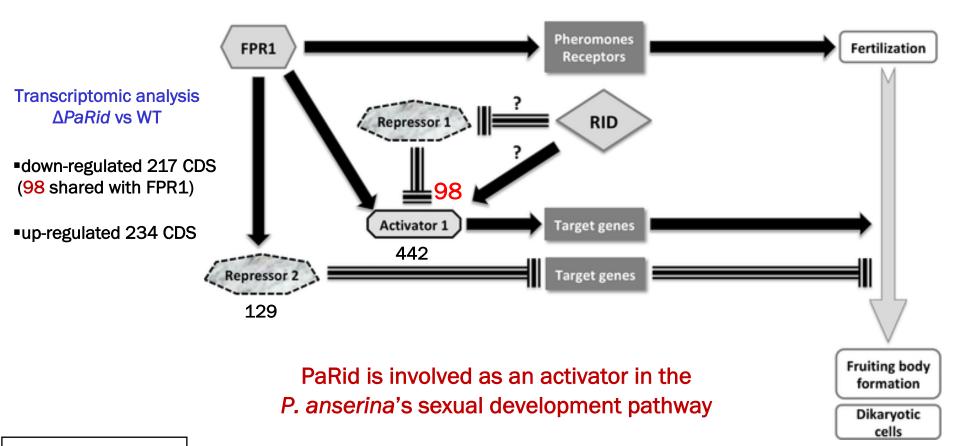
 $\mathbf{Q} \triangle PaRid \times \mathbf{C}^{PaRid}$

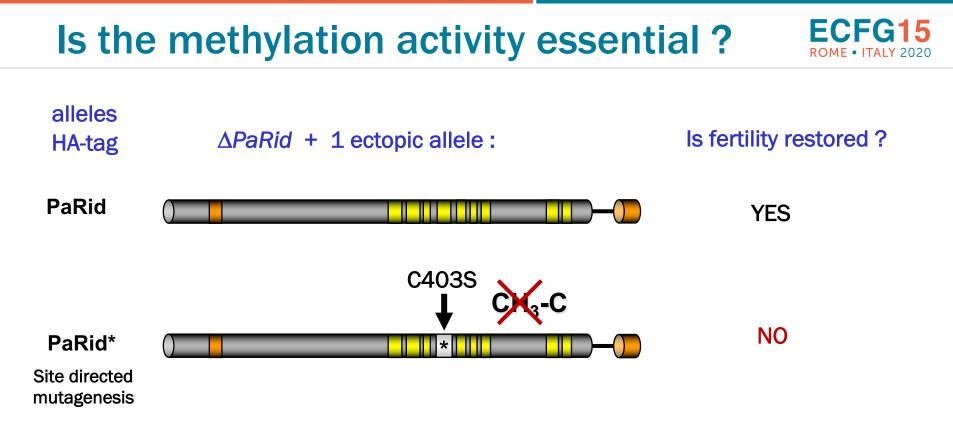
PaRid essential to the

formation of dikaryotic cells

> When RIP happens !

Grognet et al. (2019)


Working hypothesis

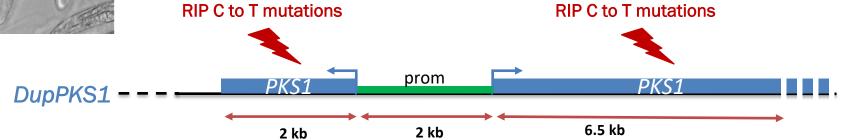

- Link(s) between RIP / RID and sexual reproduction :
 - RIP as a genome integrity check-point essential for completion of sexual reproduction ?
 - \checkmark RIP effective in *P. anserina*
 - RID as an actor of an imprinting system, through *de novo* DNA methylation ?
 - \checkmark No methylation detected on genomic DNA

PaRid network ?

Grognet et al. (2019)

DNA methyltransferase activity is essential for sexual development

Substrat ?


Grognet et al. (2019)

Is PaRid is required for RIP in *P. anserina* ?

- Construction of a RIP read-out
 - PKS1 codes for the enzyme involved in the first step of melanin biosynthesis

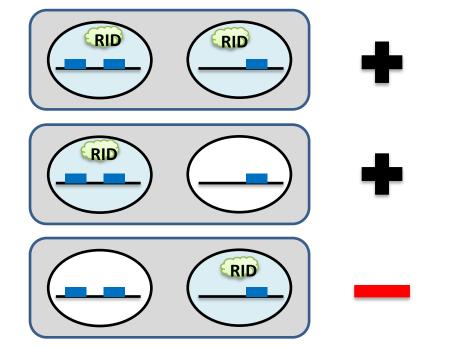
Strains harboring PKS1 duplication (DupPKS1) produce asci with whites spores due to RIP

Grognet and Malagnac, unpublished

RIP features in *P. anserina*

Orientation of crosses does not affect RIP efficiency

Grognet and Malagnac, unpublished

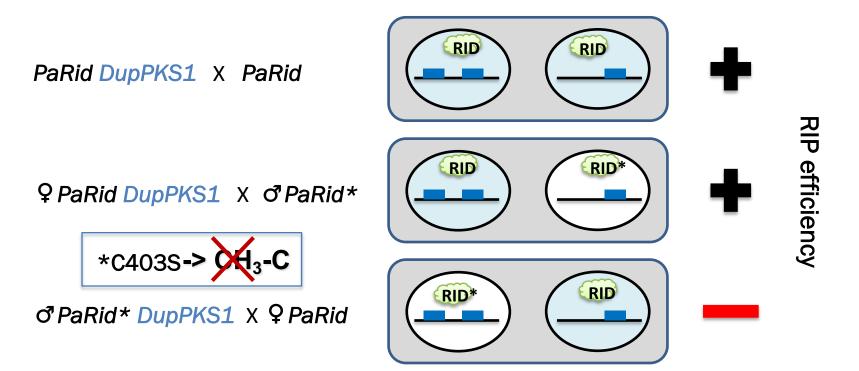

PaRid is required for RIP in P. anserina

PaRid DupPKS1 X PaRid

 $PaRid DupPKS1 X O \Delta PaRid$

ΔPaRid DupPKS1 X **Q** PaRid

PaRid is essential to RIP in the haploid nucleus carrying the duplication


RIP

efficiency

Grognet and Malagnac, unpublished

ECFG15

Methyltransferase activity of PaRid is essential to RIP

Chromatin modifiers : writers and readers ECFG15

Constitutive heterochromatin

DNA repeats (RIPed loci) Subtelomeric DNA domains Centromeres

Histone mark: H3K9me3

Writer = PaKmt1 Reader = PaHP1

Chromosome mechanism and structure Transposable element silencing

Facultative heterochromatin

Coding sequences

Histone mark: H3K27me3 Polycomb group

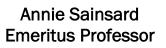
Writer = PaKmt6

Gene expression regulation Development

Chromatin features & RIP in P. anserina

 PaKmt1 → H3K9me3 PaHP1 reader
 Constitutive heterochromatin

■ PaKmt6 → H3K27me3 Facultative heterochromatin


Crosses	RIP efficiency	\bigcirc Fertility
ΔPaKmt1 X ΔPaKmt1 DupPKS1	+	+
ΔPaHP1 X ΔPaHP1 DupPKS1	+	+
ΔPaHP1 ΔPaKmt1 X PaKmt1Δ PaHP1Δ DupPKS1	+	+
ΔPaKmt6 X ΔPaKmt6 DupPKS1	-	+/-

Conclusions and perspectives

- PaRid is essential to RIP and sexual development and acts as an early activator of this developmental pathway, along with mating-type transcription factor
- ✓ 'De novo' methyltransferase catalytic activity is required for both RIP and sexual development
- PaKmt6 (H3K27me, PRC2-related complex, facultative heterochromatin) is required for proper sexual development and RIP
 - Co-factors, unknown additional function(s) of RID-like proteins ?
 - \diamond Identification of suppressors
 - \diamond KO of some of the genes differentially expressed
 - ♦ PaRid co-IP & mass spec
 - Substrat DNA or RNA ? Transient imprinting ? => maternal effect
 - ♦ PaRID ChIP-seq
 - ♦ iCLIP: Protein-RNA interactions

Acknowledgements

Fabienne Malagnac Professor

Pierre Grognet Assistant Professor

Florian Carlier PhD student

Sylvie François Laboratory Technician

CNRS University Paris Sud BIG LIDEX Paris Saclay LABEX ARBRE INRA Nancy – Ascotube Project IFPEN

