A secretome tailored to endure oxidative stress in wood decomposer *Postia placenta*

UNIVERSITY OF MINNESOTA

NATIONAL LABORATORY

<u>Jesus Castaño</u>, Jiwei Zhang, Mowei Zhou, Carrie Nicora Advisor Dr. Jonathan Schilling

1. Background

Ligninolytic Fungi

White rot

Oxidative enzymes

Peroxidases, laccases

BR fungi usually faster decomposers, yet have fewer lignocellulolytic genes.

How?

Brown rot

Peroxidases, laccases less efficient than those used by WR

1. Background

Brown rot decay \rightarrow Two-step mechanism (1st oxidative, 2nd saccharification)

Hemicellulases, cellulases, pectinases

1. Background

Research questions

1. Is tolerance of ROS unique to brown rot fungi (vs white rot)?

2. What's the basis of the ROS tolerance?

Trametes versicolor

Soft rot

T. reesei

Brown rot

P. placenta

ECFG15

3. Experimental set-up

Pectinase

Residual activity after ROS exposure

Oxidation dynamics II (Significant oxidation events)

V, 6

G, 3

Q. 2

Distribution of the type of <u>significant oxidative</u> found in *T. reesei*, *T. versicolor*, and *P. placenta* after the Fenton reaction treatment of enzyme extracts (log2FC >2.0 for all peptides).

Number of enzymes bearing significant oxidative modifications

Fungus Enzyme	T. versicolor	T. reesei	P. placenta
Pectinase	4	0	0
α-L-arabinofuranosidase	2	1	0
α-D galactosidase	1	2	0

• GHs in *P. placenta* show tolerance of ROS.

• Specific oxidative modifications of GHs in *T. reesei* and *T. versicolor* seem to be the key to their sensitivity.

• W, M, and C are the most affected residues (Monooxidation)

Acknowledgments

Grazie mille a Tutti voi!!

Jiwei

Mowei

Joon