

ECFG15 ROME • ITALY 2020

Clathrin-mediated endocytosis facilitates internalization of *Magnaporthe oryzae* effectors into rice cells

Ely Oliveira-Garcia, Magdalena Martin-Urdiroz, Clara Rodrigues Herrero, Jungeun Park, Sunghun Park, Nicholas Talbot & Barbara Valent

M. oryzae effectors

M. oryzae cytoplasmic effectors are delivered from the BIC and internalized into the rice cell's cytoplasm by endocytosis.

Biotrophic Interfacial Complex (BIC): contains mainly cytoplasmic effectors

Oliveira-Garcia & Valent (2015) Curr Opin Microbiol. 25 : 92-101.

The BIC organization on an invasive primary hypha

BICs are formed by multiple vesicles containing mainly cytoplasmic effectors

Dynamics of BIC and cytoplasmic effector delivery

undergoing

ECFG15

ROME • ITALY 2020

Tagging two mechanisms of plant endocytosis

Plant plasma membrane

Plant plasma membrane

clathrin-mediated endocytosis (CME)

clathrin-independent endocytosis (CIE)

Lti6b (Plant plasma membrane marker protein) localization

- BICs are formed by plant plasma membrane (see Lti6b:eGFP localization – green fluorescence)

Plant plasma membrane associated effector: Bas83

ECFG15

Bas83 localizes at BICs, EIHM and plasma membrane of vesicles (see Bas83:mRFP localization – red fluorescence)

Plant Actin localization

Control

Rice cells infected by *M. oryzae*, KV209

- BICs contain large amounts of plant Actin (see LifeAct:eGFP localization – green fluorescence)

Plant Clathrin localization

- BICs contain large amounts of plant Clathrin (see CLC1:eGFP localization – green fluorescence)

Plant Clathrin dynamics

BICs contain large amounts of plant Clathrin

Silencing of rice endocytosis machinery

ECFG15

Biotrophic fungal infection requires mainly clathrin-mediated endocytosis.

Silencing of rice endocytosis

RNAi-Os*Flot1*

RNAi-OsAP2

Biotrophic fungal infection requires mainly clathrin mediated endocytosis.

Chemical plant endocytosis inhibition

	Chemical	Target	Mode of action	Comments	References
Clathrin-	Filipin	CIE*	Binds to sterols in the membrane.	Toxic at higher concentration.	(Rodal et al., 1999)
lependent	Methyl-β- cyclodextrin	CIE	Deplete cellular membranes of sterol by increasing the water solubility of the sterol.	caveolae-dependent endocytosis.	(Rodal et al., 1999)
	Chlorpromazine	CME**	Translocates clathrin and AP2 from the cell surface to intracellular endosomes.	Also inhibits CIE in some cells.	(Wang et al., 1993)
	Cantharidin	CME	PP2A (cantharidin)	Affect flg22-mediated FLS2 endocytosis.	(Serrano et al., 2007)
Clathrin- nediated	Fluazinam	CME	PP2A (cantharidin)	Affect flg22-mediated FLS2 endocytosis.	(Serrano et al., 2007)
	Triclosan	CME	PP2A (cantharidin)	Affect flg22-mediated FLS2 endocytosis.	(Serrano et al., 2007)
	Wortmannin	nd***	Inhibits PI3Ks and PI4Ks, block vacuolar trafficking, multivesicular bodies and endocytosis.	Late endosomes lose their clathrin; Potential CME association.	(Bright et al., 2001; Robinson et al., 2008; Sachse et al., 2002)
	Concanamycin A	nd	Targets V ATPase and blocks trafficking at trans- Golgi network, endosome acidification.	Induce acidification, which is crucial for many endocytic pathways.	(Maranda et al., 2001; Robinson et al., 2008)

ECFG15

ROME • ITALY 2020

Table 1. Chemical endocytosis inhibitors

ind

*CIE: clathrin-independent endocytosis; **CME: clathrin-mediated endocytosis; ***nd: not determined.

Chemical plant endocytosis inhibition

Biotrophic fungal infection requires mainly clathrin mediated endocytosis.

Chemical plant endocytosis inhibition

Effector accumulation under appressorial pores

Biotrophic fungal infection requires mainly clathrin mediated endocytosis.

Conclusions

- Based on these results we conclude that cytoplasmic effector translocation is mediated by vesicle formation, and may be characteristic of appressoria as well as biotrophic invasive hyphae.
- Clathrin-dependent endocytosis mediates internalization of *M. oryzae* effectors into rice cells
- Our results also suggest a potential role of *M. oryzae* effectors for manipulation of host cell endocytosis.

Thank you for your attention

Acknowledgments:

Excellent collaborators

Valent's Lab - Dept. of Plant Pathology

- Dr. Barbara Valent
- Pierre Migeon
- Giovana Cruppe
- Dr. Huakung Zheng
- Dr. Martha C. Giraldo

Park's Lab - Dept. of Horticulture

Talbot's Lab

ECFG15

LOUISIANA STATE UNIVERSITY Garcia's Lab

Nelson's Lab