

Emergence and diversification of a highly invasive tree pathogen lineage

L. STAUBER^{1,2}, S. PROSPERO¹ & D. CROLL²

¹ Swiss Federal Research Institute WSL, Phytopathology, Birmensdorf (Switzerland)

² Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel (Switzerland)

Chestnut blight – Cryphonectria parasitica

Pathogen vs saprophyte

Pathogen vs saprophyte

Emergence & diversification of a highly invasive pathogen lineage

Pathogen vs saprophyte

Emergence & diversification of a highly invasive pathogen lineage

Illumina WGS data (~300 isolates)

Genome size

Cell wall degrading enzymes

Cell wall degrading enzymes

Cell wall degrading enzymes

CAZyme gene count

Emergence & diversification of a highly invasive lineage

The chestnut blight invasion

• <u>vc type</u>: EU-12

- <u>vc type</u>: EU-12
- <u>Mating type</u>: MAT-1

- <u>vc type</u>: EU-12
- Mating type: MAT-1

• S12 lineage = "clonal"

What we don't know about S12...

What we don't know about S12...

What we don't know about S12...

Origin?

Diversity in S12?

Evidence for adaptive evolution?

Stauber et al. bioRxiv 2020

Stauber et al. bioRxiv 2020

S12 - genetic donors

Origin of S12

Likely origin of S12 in northern Italy

Stauber et al. bioRxiv 2020

Genetic drift & human trade

 Mutation accumulation (~85% singletons!)

Recombination in a "clone"

- Mutation accumulation (~85% singletons!)
- Recombination (PHI: p=0.0035**)

Purifying selection within lineage

- Mutation accumulation (~85% singletons!)
- Recombination (PHI: p=0.0035**)
- Few deleterious mutations

Origin

European (Italian) bridgehead

Origin European (Italian) bridgehead

Diversity

no geography, mutation accumulation

Origin European (Italian) bridgehead

Diversity no geography, mutation accumulation

Evolution

- Purifying selection
- clonality advantageous?
- Recombination possible!

Thanks to...

Simone Prospero (Swiss Federal Research Institute WSL)

Daniel Croll (University of Neuchâtel)

Laboratory of Evolutionary Genetics (University of Neuchâtel)

Phytopathology Group (WSL)

Ludwig Beenken (WSL)

Genetic Diversity Centre Zurich (GDC)

Swiss National Science Foundation (SNF)

Secil Akilli, Marin Ježić, Mihajlo Risteski and Kiril Sotirovski

