

RUB

Combined meta'omics reveal links among fungal community composition, gene expression, and chemical changes in decomposing leaf litter

Marco Guerreiro^{1*}, Stephan Kambach², Raphael Stoll¹, Andreas Brachmann³, Jürgen Senker⁴, Dominik Begerow¹, Derek Peršoh¹

¹Ruhr University of Bochum, Bochum, Germany; ²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; ³Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany; ⁴University of Bayreuth, Bayreuth, Germany

* Marco.Guerreiro@rub.de

February 19th, 2020

RUB

Introduction – Nutrient cycle in forests

RUHR-UNIVERSITÄT BOCHUM

Introduction – Decomposition as a key process in the nutrient cycle

Introduction – Controlling factors

Organic matter Decomposition Decomposition products

Decomposition products

RUE

Introduction – Controlling factors

Introduction – Climate

Parton et al. (2007), Science

CLIMATE

QUALITY

DECOMPOSER ACTIVITY

Litter inputs

Decomposition products

RUB

Decomposition products

de Souza (2013), InTech

Schematic view of lignin Glazer and Nikaido (2007), Cambridge Univ. Press

Schematic view of lignin Glazer and Nikaido (2007), Cambridge Univ. Press

RUB

Mass loss (%) Carbon content (%) Nitrogen content (%) Total phenolics Hemi-cellulose Cellulose Lignin Soil properties (pH) Nutrient content (K, P, NH₄⁺, NO₃⁻)

RUB

Ethyl acetate

Nuclear Magnetic Resonance (NMR) spectroscopy

Bulk

parameters

RUB

Nuclear Magnetic Resonance (NMR) spectroscopy

RUB

Introduction – Litter quality

Introduction – Decomposer activity

Marco Guerreiro | February 19th, 2020

Talbot et al. (2014), PNAS

RUB

Material and Methods

Material and Methods

Results – Communities are structured differently

Results – Leaves and litter are chemically distinct

RUHR-UNIVERSITÄT BOCHUM

Results – Chemical composition becomes more similar with ongoing decomposition

Results – Identification of correlative relationships between individuals, enzyme transcription and chemical changes

based on Spectral Database for Organic Compounds

RUHR-UNIVERSITÄT BOCHUM

Results – Identification of correlative relationships between individuals, enzyme transcription and chemical changes

Results – Identification of correlative relationships between individuals, enzyme transcription and chemical changes

RUHR-UNIVERSITÄT BOCHUM

Results – Identification of correlative relationships between individuals, enzyme transcription and chemical changes

RUHR-UNIVERSITÄT BOCHUM

Results – Identification of correlative relationships between individuals, enzyme transcription and chemical changes

Results – Identification of correlative relationships between individuals, enzyme transcription and chemical changes

RUB

Summary

Acknowledgements

Martin Gartmann

Members of the Geobotany Department

Local Management Teams, Infrastructure

RUHR-UNIVERSITÄT BOCHUM

RUB

Linking decomposer activity to decomposition

Marco Guerreiro^{1*}, Stephan Kambach², Raphael Stoll¹, Andreas Brachmann³, Jürgen Senker⁴, Dominik Begerow¹, Derek Peršoh¹

¹Ruhr University of Bochum, Bochum, Germany; ²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; ³Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany; ⁴University of Bayreuth, Bayreuth, Germany

* Marco.Guerreiro@rub.de

February 19th, 2020

Relative distribution (%)

Litter inputs

Decomposition products

Relative distribution (%)

Litter inputs

Relative distribution (%)

Discussion – Community disturbance

Adapted from Allison and Martiny (2008), PNAS