

Sustainable carbon solutions by the aid of wood decay fungi

LIGNOCELLULOSE WASTE BIOCONVERSIONS OPENED WITH COMPARATIVE GENOMICS AND ECOPHYSIOLOGY

Taina Lundell

University of Helsinki, Finland

Background: terms and facts

- ECFG15 ROME • ITALY 2020
- Sustainability = capacity for the biosphere and human civilization to coexist on Earth (Wikipedia)
- Climate change = atmospheric warming and its consequences
- Global warming = human caused, release of excess
- Greenhouse gases GHG: CO₂, CH₄, N₂O
- Circular economy = re-use of wastes as raw materials
- Biomass = plant and animal materials for energy and use
- Renewable natural resources = plant, animal and microbial biomasses and products, carbon capturing and re-cyclable
- -> alternatives for fossil fuels and resources

Climate change & global warming effects ECFG15 ROME + ITALY 2020

The University of Manchester, UK, 2016, report https://www.manchester.ac.uk/discover/news/severe-future-effects-of-climate-change/

Fossil CO₂ and GHG emissions of the world, 2019

ECFG15

ROME • ITALY 2020

Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J.G.J., Vignati, E., Fossil CO2 and GHG emissions of all world countries - 2019 Report, EUR 29849 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-11100-9, doi:10.2760/687800, JRC117610.

How fungi may help us?

- CO₂ level in the atmosphere has increased >40% since anno 1750
- Global CO₂ emissions from fossil fuels combustion and processes: 40 Gtn/year (37.9 Gtn in 2018)
- Annual increase: 1.9 %
- China, US, India, E28, Japan: 2/3 of total global fossil CO₂ emissions
- To mitigate accumulation of CO₂
- -> replace fossil fuels with renewable biomasses and energy sources
- -> process recycled organic wastes by microbes and fungi
- -> fungal biotechnology and bioconversions for
- -> renewable biofuels, novel bio-based and biodegradable materials for industry and consumers

Solution 1: Fungal genomics

• New CAZYmes and genes from white rot fungi for lignocellulose conversion and valorization of biomasses, wastes and lignins

ECFG15

Mäkinen et al. BMC Genomics (2019) 20:430		BMC Genomics		Applied Microbiology and Biotechnology (2018) 102:5657–5672 https://doi.org/10.1007/s00253-018-9045-y	2018
nttps//doi.org/10.1100/51200+019-501/-6	2019			GENOMICS, TRANSCRIPTOMICS, PROTEOMICS	
RESEARCH ARTICLE Genome description of	Phlebia radiata 79		pen Access	Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by <i>Phlebia radiata</i> Mari A. Mäkinen ¹ · Netta Risulainen ¹ · Hans Mattila ¹ · Taina K. Lundell ¹	
With comparative genomics an lignocellulose decomposition r phlebioid fungi Mari Mäkinen ^{1,4} , Jaana Kuuskeri ¹ , Pia Laine ² , Olli-Pekka Smolander ^{2,5} , A Fred O. Asiegbu ³ , Lars Paulin ² , Petri Auvinen ² and Taina Lundell ¹ *	sition mach	alysis on nachinery of ^{ndriy Kovalchuk³, Zhen Zeng³}	Kuuskeri et al. Biotech DOI 10.1186/s13068-	anol Biofuels (2016) 9:192 016-0608-9 2016	Biotechnology for Biofuels
	a Smolander ^{2,5} , Andriy Ko ina Lundell ^{1*} ©		RESEARCH	research Fime-scale dynamics of proteome	
			and transcriptome of the white-rot fungus <i>Phlebia radiata</i> : growth on spruce wood and decay effect on lignocellulose		
			Jaana Kuuskeri ¹ , Paula Nousiaine	aana Kuuskeri ¹ , Mari Häkkinen ¹ , Pia Laine ² , Olli-Pekka Smolander ² , Fitsum Tamene ³ , Sini Miettinen ³ , 'aula Nousiainen ⁴ , Marianna Kemell ⁵ , Petri Auvinen ² and Taina Lundell ^{1*}	

Phlebia radiata 79 comparative genomics

minus.g11035

1784094 bp

GH10

plus.g11539

minus.g10274

ΔΔ9

AA9

Unitig 9

672573 bp

minus.g11034

1780628 bp

plus.g11538

124277 bp

minus.g10273

AA9

AAG

С

GH10

В

Clustered localization of CAZy genes

-> co-regulation?

-> transcriptome RNA-Seq meta-analysis, Mattila HK et al. 2020 Biotechnol Biofuels

Solution 1: Fungal genomics

Towards understanding wood decay fungal metabolism and regulation to allow systems biology

approaches for bioconversions

- Clustering of 14 transcriptomes
 of *Phlebia radiata* on
- Different substrates and lignocelluloses
- Under aerobic and anaerobic (fermentative) atmospheres
- Mattila H, et al. (2020) Biotechnology for Biofuels
- Poster A2-27

Solution 2: Fungal ecology & physiology

- -> to understand fungal interactions
- Wood decay Basidiomycota species
- Polyporales
- Hymenochaetales
- Natural and specific co-cultures
- Enzyme activities
- VOCs & gases
- Dissolved degradation products
- Interactomes

ECFG15

Tuulia Mali¹, Mari Mäki^{2,3}, Heidi Hellén⁴, Jussi Heinonsalo^{1,3,4}, Jaana Bäck^{2,3} and Taina Lundell^{1,*,†}

Solution 2: Fungal ecology & physiology

- Interactions of wood-decay Agaricomycetes, enzyme activities and decomposition events
- Tuulia Mali PhD project

- 3 species of *Basidiomycota Agaricomycetes*
- isolated in Finland on decaying wood
- colonize Norway spruce (Picea abies) dead wood

ECFG15

- BR fungus Fp supreme colonizer
- WR fungus Pr forms dense yellow mycelial front
- against the second WR fungus Tr

Mali T, et al. 2017 PLoS ONE 12(9): e0185171 Mali T, et al. 2019 FEMS Microbiology Ecology 95: Mali T, Mäki M, Hellén H, Bäck J, Lundell T, 2020 9 months on spruce wood

Signature VOCs released by wood decay fungi from spruce wood

methyl 3-furoate

White Rot

α-humulene (sesquiterpene)

terpinolene

Brown Rot

6-methyl-5-hepten-2-one

Mali T, et al. 2019 FEMS Microbiology Ecology 95: fiz135

Solution 3: Fungal bioconversions

• Biofuels by wood decay fungi: low cost, single-step bioprocessing and fermentation to ethanol

Mattila H, Kuuskeri J, Lundell T (2017) Bioresource Technology 225: 254-261

 Sustainability: lignocellulose instead of food plant biomasses

FCFG15

- Circular economy: waste as raw material
- CO₂ mitigation: wood fibers and products are biotransformed, not burned
- 2nd generation biofuels, metabolites, natural products

Ethanol, organic acids and sugars by fungi from lignocelluloses and wastes

Ethanol production by Phlebia species on lignocellulose wastes

Hans Mattila PhD project, poster A2-27

* Unbleached hardwood kraft pulp.

^b Sodium hydroxide pre-treatment,

Mattila H, Kuuskeri J, Lundell T (2017) Bioresource Technology 225: 254-261 Mattila H, Kacar D, Mali T, Lundell T (2018) AIMS Energy 6(5): 866-879

Solution 3: Fungal bioconversions

- Natural products from waste lignocelluloses by wood decay fungi
- Eero Kiviniemi, poster C1-43 Feb 20th
- Released compounds and metabolites
- Medicinal and bioactive responses tested

ECFG15

ROME • ITALY 2020

Biotechnology applications on wood-decaying fungi: conclusions

Thank you for your attention! Kiitos! Grazie!

More information on us:

