

ECFG15 ROME • ITALY 2020

Functional and biological importance of lytic polysaccharide monooxygenases (LPMO) and cellobiose dehydrogenase (CDh) in Aspergillus nidulans

Cesar R. F. Terrasan

LYTIC POLYSACCHARIDE MONOOXYGENASES

Metalloenzymes which present a characteristic solvent exposed active-site oxidizing polysaccharide chains in a crystalline environment.

- Aromatic and hydrophilic amino acids for interaction with substrate.
- Exposed copper is held in place by a conserved "histidine brace" motif
 - Two conserved histidines, one of which is the N-terminal residue

Reaction

- Reduction of the copper by an external reductant (chemical or protein)
- Reaction with either O_2 or $H_2O_2 \rightarrow$ powerful oxygen species
- Hydroxylate the C1 or the C4 carbon in glycosidic bonds

Eijsink et al., 2019. 201: 10.1186/s13068-019-1392-0

LYTIC POLYSACCHARIDE MONOOXYGENASES

- The discovery of LPMOs profoundly changed the enzymatic conversion of polysaccharides, especially recalcitrant materials such as chitin and cellulose
- Scratch in the polymer, providing additional ending points for other enzymes
- LPMO contribution → large if process conditions are adapted to the key determinants of LPMO activity (Müller et al., 2015)
 - Presence of electron donors and molecular oxygen.

AA9 LPMO IN FUNGI

Sequence-based classification system of the CAZy database places LPMOs into 7 families of the class 'Auxiliary Activities'

- families AA9-11 and AA13-16
- Family AA9 identified across Ascomycota and Basidiomycota
 - Cellulose, glucans
 - Hemicellulose
 - Mixed

	E	co	log	JY			١	Whi	te r	ot												Bro	wn	rot		l d	itte eco Cop	er-/S mp prop	òtra osir ohil	w- ng/ ic	pa F	Pla atho Para	ant oge isiti	n/ c	EC	М	Ye	east Aolo	/	Asp sp	ergi beci	llus es
AZy family	5	. subglabra	adusta	subvermispora	. squalens	mediterranea	lucidum	anoderma sp.	. irregulare	carnosa	chrysosporium	brevispora	ostreatus	strigosozonata	hirsutum	versicolor	commune [†]	botryosum*	argillacea*	puteana	acryopinax sp.	pinicola	. trabeum	placenta	lacrymans 7.9	'. cocos	bisporus var. bisporus	. marginata	volvacea	cinerea	l. laricis-populina	graminis	. maydis	mesenterica	bicolor	indica	neoformans var. grubii	glutinis	. sebi	fumigatus	nidulans	niger (ATCC1015)

15 10 0 4 4 2 5 2 11 19 30 33 4 3 0 0 13 25 1

Description of oxidative enzymes in Chytridiomycota and Cryptomycota \rightarrow LPMOs were also present in early evolution (Lange et al., 2019)

Multiplicity of AA9 in fungal genomes is still not understood, little is known about the regulation of expression or biological functional

Aspergillus nidulans

9 genes encoding for AA9 LPMOs

Secretion of some of these enzymes has been verified by proteomics after cultivation with different substrates

- AnLPMO9D (Jagadeeswaran et al., 2016)
 - Oxidizes C1
 - Cellulose and xylolgucan
- AnLPMO9B (Jagadeeswaran et al., 2018)
 - Oxidizes C4
 - Cellulose and cellooligosaccharides

					Cultivation con	dition	
Protein	CBM	Uniprot	Starches	Sorghum stover	Delignified surgacane bagasse	Xylan from beechwood	Glucose
AnLPM09A		Q5BAP2	Х		Х	Х	Х
AnLPM09B	CBM1	Q5BCX8	Х				
AnLPM09C		Q5AZ52	Х	Х	Х		
AnLPM09D		Q5B8T4	Х	Х			
AnLPM09E	CBM1	Q5AQA6					
AnLPM09F		Q5B6H0		Х			
AnLPM09G		Q5BEI9		Х			
AnLPM09H		Q5B7G9					
AnLPM09I		Q5AUY9					
REFERENCE			Nekiunaite et al., 2016	Saykhedkar et al., 2012	F	Rubio et al., 2016	

TARGETS SELECTION

Brazil 700Mtons

Protein	CAZy		Avicel			Bagasse	e		Glucos	e	Straw			
(n=301)	domain	24h	72h	120h	24h	72h	120h	24h	72h	120h	24h	72h	120h	
AnLPMO9F	AA9	24	16	11	15	11	13	0	0	0	22	8	11	
AnLPMO9G	AA9	3	7	0	4	4	8	0	0	0	3	3	3	
AnLPMO9D	AA9	0	0	0	30	5	5	0	0	0	3	0	0	
AnLPMO9C	AA9	0	0	0	10	3	0	0	0	0	0	3	0	
AnLPMO9B	AA9/CBM1	0	0	0	5	0	4	0	0	0	0	0	0	
AnlpMO9A	AA9	0	0	0	2	0	0	7	2	0	0	0	0	

CLONING AND EXPRESSION

- Genes encoding *An*LPMOs -9C, -9F and -9G, and the CDH were cloned into the pEXPYR vector for expression controlled by the glucoamylase promotor
- Homologous expression

Fig. 3 – pEXPYR expression vector for high levels production of client proteins in fungi.

LPMO CHARACTERIZATION

SPECIFICITY FOR SUBSTRATE

Substanto		A. nidulans LPMOs	
Substrate	AnLPMO9C (C1)	AnLPM09F (C1/C4)	AnLPMO9G (C1/C4)
Cellulosic			
PASC	+	+	+
Celery	+	+	+
Celloheaxose	-	-	-
<u>Chitin</u> (beta from squid pen)	-		-
Hemicellulosic			
Xylan from birchwood	-	-	-
Xyloglucan from tamarind	+	+	+
Beta-glucan from barley (β -1,3/1,4 mixed linkage)	-	+	+
Glucomannan (konjac)	-	-	+
Mannan from ivory nut	-	-	-

-

-

-

Mixed

PASC + birchwood xylan

SPECIFICITY FOR SUBSTRATE

AVICEL DEGRADATION

DELETION AND MUTANTS CHARACTERIZATION

CRISPR/Cas9 system for Aspergilli (Nødvig et al.,.2018)

Growth on agar plates with different substrates

- ΔCDH
- ΔAnLPMO9F - ΔAnLPMO9G

MUTANTS CHARACTERIZATION

Dala		CD	Control	ΔCDH	ΔLPMO9F	ΔLPMOG
Role	Protein (ANOVA, p<0.05)	5P	9	Sum of pe	ptide count	s
Cellulose degradation	AN2828 - Beta-glucosidase (bglL)	Y	29.1	2.6	9.9	8.3
	AN5176 - Cellobiohydrolase (cbhA)	Y	18.8	0.0	42.4	23.9
	AN3860 - Lytic polysaccharide monooxygenase (AnLPMO9F)	Y	14.0	0.0	0.0	14.5
Hemicellulose degradation	AN3613 - Endo-1,4-beta-xylanase (xlnA)	Y	0.0	0.0	7.5	7.1
	AN7349 - Alpha-1,3-glucanase (mutanase) (mutA)	Y	0.0	0.0	8.5	0.0
	AN7269 - Secondary metabolite biosynthetic process, fungal-type cell wall localization	Ν	0.0	10.9	0.0	1.2
Othors	AN7657 - 1,3-beta-transglycosidase (gelA), predicted role in glucan processing	Y	8.8	28.2	8.6	6.4
Others	AN8969 - Lysozyme activity, peptidoglycan catabolic process	Y	0.0	33.2	0.0	0.0
	AN4055 - Acid phosphatase	Y	47.1	82.1	60.1	42.8
	AN7181 - Unknown protein	Y	1.9	4.8	20.2	7.5
Protocos	AN7962 - Deuterolysin-type metallo-proteinase (pepJ)	Y	39.1	13.4	41.8	26.7
Proteases	AN10351 - Metalloaminopeptidase activity	Ν	0.0	4.3	5.4	0.0

Figure I. The Percentage of Characterized Fungal CAZymes Compared with Their Total Number in the Public CAZy Database (A. Dilokpimol and X. Li, Personal Communication). Note that this database does not include most Check branchaster the Check provide the Account of Check and a Count of the Check provide the Check and the Check provide the Check provid significant overestimation of the percentage of characterized enzymes. Abbreviations: AA, Auxiliary activities; CAZy, carbohydrate active enzyme; CE, carbohydrate esterase; GH, glycoside hydrolase; PL, polysaccharide lyase.

Characterized Х **Total number**

ACKNOWLEDGEMENTS

Andre R L Damasio (Supervision)

Institute of Biology

Department of Biochemistry and Tissue Biology

Laboratory of Enzymology and

Molecular Biology of Microorganisms (LEBIMO)

Paul H Walton (Supervision)

Department of Chemistry

York Structural Biology Laboratory (YSBL)

Technology Facility

