Pathogen-secreted effectors: host subversion and what else?

Bart Thomma

European Conference on Fungal Genetics, Rome, 2020

Plants perceive pathogens with pattern receptors

Invasion Pattern-Triggered Response (IPTR)

Cook et al., Annu. Rev. Phytopathol. 2015

Effectors are crucial for continued symbiosis

Effectors can become invasion patterns

Pathogens have "two-speed" genomes

- Core genome : household processes
 - Conserve and maintain (purifying selection)

- Flexible genome: effectors and other pathogenicity factors
 - Plasticity and rapid adaptation

Verticillium dahliae

Verticillium plasticity: lineage-specific regions

LS regions: recent duplications & gene loss

Faino et al., Genome Research 2016

LS regions display reduced SNP frequencies

100years

Faino *et al.*, Genome Research 2016 Depotter *et al.*, Molecular Ecology 2019

Why reduced SNP frequencies in LS regions?

Acquisition of LS regions by horizontal transfer?

• Unlikely: phylogeny of LS genes follows phylogeny of *Verticillium* genus

LS regions: intermediate chromatin state

Heterochromatin: DNA methylation and H3K9me3 at specific TEs, closed DNA (low ATAC-seq)

Euchromatin: Devoid of DNA and histone methylation, open DNA (high ATAC-seq)

LS regions

- Devoid of DNA and H3K9 methylation
- Enriched for H3K27me3
- Intermediate ATAC-seq signal

Machine learning prediction of LS regions

- Approached LS identification as a binary classification problem
- Used four machine learning algorithms to assess ability to identify previously unknown LS regions
- Independently re-iterated over the genome to saturate prediction

Proximity ligation: LS regions interact

V. dahliae effector catalogs are highly divergent

Comparative genomics: tomato pathogenicity

Tom1 mediates pathogenicity on tomato

Tom1 can confer pathogenicity to non-pathogens

The Verticillium dahliae Ave1 effector

Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and **RNA** sequencing

Ronnie de Jonge^{a,1}, H. Peter van Esse^{a,1}, Karunakaran Maruthachalam^b, Melvin D. Bolton^c, Parthasarathy Santhanam^a, Mojtaba Keykha Saber^a, Zhao Zhang^a, Toshiyuki Usami^d, Bart Lievens^{e,f}, Krishna V. Subbarao^b, and Bart P. H. J. Thommaa,g,2

V. dahliae

Ave1 is ubiquitously expressed

in vitro

in soil

VdAve1 displays selective antimicrobial activity

VdAve1 induces microbiome changes

VdAve1 affects antagonistic Sphingomonadales

VdAve1 affects antagonistic Sphingomonadales

Life stage-specific microbiome-manipulation?

Take-home messages

The 2-speed genome of Verticillium involves lineagespecific regions LS regions display an intermediate chromatin state Single lineage-specific effectors can act as host range determinant

Part of the effector catalog is intended for microbiome manipulation

Acknowledgements

Genome evolution: Jasper Depotter (Cologne, GER) David Cook (Kansas, USA) Martin Kramer M Seidl (Utrecht, NL)

Microbiome manipulation: Nick Snelders Hanna Rovenich (Cologne, GER) Gabrielle Petti (Zürich, CH)

Other: Hui Tian David Torres Jasper Vermeulen Katharina Hanika Edgar Chavarro Carrero Nelia Ortega Parra Grardy yayan den Berg

Collaborators: V Lipka (Göttingen, DE) J Mesters (Lübeck, DE) L Hamoen (Amsterdam, NL) M Bolton (Fargo, US) B Zhang (Nanjing, CN) L Zhu (Wuhan, CN) J Rudd (Rothamsted, UK) S Miyashita (Tohoku, JP)

CEPLAS

